
30 | informatics.nic.in | January 2014

E-Gov Products and ServicesTechnology Update

Edited by
PRASHANT BELAWARIAR

WHAT IS NODE.JS?
Node.js is a software platform that is

built on Chrome's V8 JavaScript runtime
for building scalable network
applications effortlessly. Node.js uses an
event-driven, non-blocking I/O model
that makes it lightweight and efficient,
perfect for data-intensive real-time
applications that run across distributed
devices. Node.js, initially developed by
Ryan Dahl, also provides an REPL
(Read-Eval-Print-Loop) environment for
interactive testing.

WHY JAVASCRIPT INCLUDED IN
NODE.JS?
• Asynchronous - JavaScript is naturally
asynchronous with event model well
suited for building highly scalable web
applications through callbacks.
• Less Learning curve - A huge base of
developers is already familiar with both
JavaScript and asynchronous
programming from years, developing
JavaScript in web browsers.

• Lighting Fast Script engine – Huge
advances in execution speed has made it
practical to write server side software
entirely in JavaScript.
• Code Sharing - Developers can write
web applications in one language, which
helps by reducing the "context" switch
between client and server development,
allowing code sharing between client
and server.
• Code Transformation - JavaScript is a
compilation target and there are a
number of languages that have compiled
to it already.
• Support for NoSQL - JavaScript is the
language used in various NoSQL
databases (e.g. CouchDB / MongoDB)
so interfacing with them is a natural fit.
• JSON - It is a very popular data
interchange format today and it is native
JavaScript.

NODE.JS ARCHITECTURE
Node.js platform consists of three

layers. The base layer contains all the
core components, middle layer acts as a
middle-ware by establishing
communication from lower to top layer.

The final top layer
consists of all
JavaScript API. The
core components are
as follows:
• V8 - Open source
JavaScript engine
developed by Google
• Libev – Implements
event loop and
abstracts the
underlying specific
technologies use (such
as select, epoll, etc)

As number of internet users is
rising steadily, the servers are
getting flooded with their
requests and responses. To advert
this situation, the servers are
highly equipped with the high-end
hardware like maximum number
of core/processor, memory,
enhanced I/O devices etc. But,
these arrangements are not quite
enough to handle the increasing
active real-time communication
even with the traditional web
development platforms like
ASP.Net, Java, Python, Ruby & etc.
Node.js is the new platform
developed to address all these
issues with less and concise
coding for light-weight, highly
scalable, I/O non-blocking web
apps development.

D. MADAN PRABHU
Scientific Officer/Engr-SB

madan.prabhu@nic.in

NODE.JS:
Lightweight, Event driven I/O web development

A.K. HOTA
Senior Technical Director
ak.hota@nic.in

Node.js Architecture

Page 30-31_Informatics 1/16/2014 5:23 PM Page 30

January 2014 | informatics.nic.in | 31

E-Gov Products and ServicesTechnology Update

• libeio - Asynchronous I/O library uses
a thread pool to execute blocking calls in
the background.
• c_ares - A non-blocking/asynchronous
DNS resolution library
• http_parser - Parser for HTTP messages

NPM: NODE PACKAGE MANAGER
The Node Package Manager (npm) is

a utility bundled with Node.js that offers
a set of publicly available, reusable
components, available through easy
installation via an online repository, with
version and dependency management.
A full list of packaged modules can be
found on the NPM website
https://npmjs.org/, or accessed using the
NPM CLI tool. The module ecosystem
is open to all and anyone can publish
their own module that will be listed in
the NPM repository.

WHERE DOES NODE.JS FIT?
Node.js is best suited for data-intensive

real-time (DIRT) applications. Since
Node itself is very light weight on I/O, it
is good at shuffling/ proxying data from
one pipe to another, data streaming,
push notification. The single threaded
event model of Node doesn't fit for
heavy computation process. CPU
intensive application will block the node
responsiveness with current connection,
meanwhile rest of the connection kept in
the queue to serve later. Real time
applications are best use cases for Node.
Areas where we can utilize the Node
capabilities for implementation are:
• Real time communication systems like
CHAT, MAIL, Quick SMS, Team
collaboration application etc.
• Data streaming & proxy
• Used to enable real time communication

to current web viewers for further
discussing the service. May be used in
dial.gov.in like sites.
• Result publication sites using redis/
memcache(NoSQL) database as backend
• Train ticket booking system
• Stock brokerage systems
• System & Application Monitoring
Dashboards
• Active real time Dashboards of several
web service/REST

NODE.JS VS PHP
BENCHMARKING
The Testing box used:
• Intel(R) Core(TM) i5-2300 CPU @
2.80GHz (4 cores)
• 4GB DDR3 RAM
• Linux Mint 14 Nadia
• Nodejs – v0.10.22
• Apache/2.2.22
• PHP 5.4.6

The Scripts:
To know, how our application may

perform during peak load occasions, we
tested our scripts with 100 simultaneous
active connections over 10 seconds using
siege tool (http/https regression testing
and benchmarking utility). The
performance reports indicates how
efficient Node.js is during higher load.
Node.js is not a silver bullet that will

dominate the web development world.
Instead, it is a platform that fills a
particular void between the needs and
the technology. Node.js was never
created to solve the compute scaling
problems, instead it was genesis was
based on resolving the I/O scaling
problems, which it does really well with
its built-in filesystem (fs) module. If the
use case neither contains CPU intensive
operations nor access any blocking
resources, one can exploit the benefits of
Node.js and enjoy fast and scalable
network applications.

FOR FURTHER INFORMATION:
A.K. Hota

Senior Technical Director

NIC Odisha State Centre, Bhubaneswar

E-mail: ak.hota@nic.in

<?php

echo "<html>\n<head>\n<title>Speed test</title>\n</head>\n<body>\n";

for ($i = 0; $i < 10000; $i++) {

echo "<p>Hello world</p>\n";

}

echo "</body>\n</html>"; ?>

Performance Report

The Scripts

var http = require("http");

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/html'});

var buffer = '<html>\n<head>\n<title>Speed
test</title>\n</head>\n<body>\n';

for (var i = 0; i < 10000; i++)

buffer += '<p>Hello world</p>\n';

buffer += '</body>\n</html>';

res.end(buffer);

}).listen(8080); test.js

Page 30-31_Informatics 1/15/2014 5:55 PM Page 31

