
informatics.nic.in January 202140

Technology Update

Securing Mobile Applications
Best practices in Mobile Application Development

Edited by MOHAN DAS VISWAM

Android, iOS and hybrid apps

are vulnerable to a range of

threats, and businesses need to be

protected from the risk associated

with running mobile apps in an

unprotected environment. This

becomes more important when it

is about the Apps for government.

Platform-specific security best

practices must be followed

for robust and secure mobile

application development.

Syamkrishna B G
Scientist B
syam.krishna@nic.in

Manoj P A
Sr. Technical Director
manoj.pa@nic.in

Andrews Varghese
Technical Director
andrews.varghese@nic.in

T Mohana Dhas
Dy. Director General & SIO
mohandhas.t@nic.in
sio-ker@nic.in

Internet and mobile usage in India is all set to cross
the 900-and mobile usage in India is all set to cross
the 900-million mark by 2023, with nearly two-thirds

of the population estimated to have Internet access
and a mobile device. Mobile apps are becoming the
main medium of digital interaction. Modern-day
users are on the move and they are utilizing mobile
applications for most of the electronic transactions.

Mobile Application Threats
A smartphone user is exposed to various

threats when they use their phone. Attackers exploit
weaknesses inherent in smartphones or flaws in the
application logic. Mobile apps are often the cause
of unintentional mass data leakage. Client-side
vulnerabilities can be exploited without physical
access to the phone. Improper platform usage has
been the leading mobile security vulnerability,
which refers to the misuse of any platform-specific
feature or failure to incorporate platform security
controls. Mobile applications developed with default
configurations are vulnerable to certain known
attacks. It is important to know such vulnerabilities
while developing mobile apps. Another most
common vulnerability is insecure data storage. If
an attacker can physically access the phone, the
attacker can copy application data to a computer.

A mobile application resides completely in
the user device. There are free tools available to
decompile and regenerate source codes of a mobile
application. An attacker can learn the business logic
from the decompiled source code and can attack the
IT infrastructure using the credentials taken from
the application installed in the user device. Securely
storing the secrets in a device is also very important
for securing the IT infrastructure from various attacks.
Platform-specific security best practices must be
followed for robust and secure mobile application
development.

Developer Challenges
Along with security, the privacy of user

information is the primary concern for an app
developer. A hacker/ intruder should be prevented
from getting access to the critical data of the mobile
application. The app must protect the following from
a hacker/ intruder:
•	 Private, sensitive, and personal information
•	 Unauthorized access to the system
•	 Execution in a rooted/ jailbroken environment

A malicious user or hacker can use a rooted/
jailbroken device to install the application to study
the logic and API information. The attacker can even
create malicious/ fake apps targeting the APIs.

Mobile applications can be login based or
without login, based on the usage and security of
services provided by the enterprise. Login based

applications can have the following authentication
mechanisms in place, with one or more factor for
authentication (specifically, what a user knows, has,
and is), to determine the user’s identity.
•	 Login with a username and password
•	 LDAP authentication
•	 Login using a unique Id provided by the

enterprise (e.g. Aadhaar) along with two-factor
authentication/ N- Factor (OTP, Biometric etc.)

•	 Social Media login (Login with known OAuth APIs of
Google, Facebook, Twitter etc.)

To address the security concerns, following are
the major challenges:
•	 Web API security
•	 Securely storing the secrets

•	 Restrict running in rooted/ jailbroken device

Web API security
Mobile apps use APIs to interact with backend

systems. API keys and tokens play an important role
in application security, efficiency, and usage tracking.
Best practices must be followed while selecting
strong encryption standards. Transport Level Security
(TLS) is a standard approach for securing an HTTP
channel. To ensure message integrity, a message
authentication code (MAC) for each request using the
shared secret with an algorithm such as HMAC SHA-
256 is recommended.

Storing Secrets
There should be a minimum-security mechanism

in place for APIs used by remote non-sandboxed
clients like mobile applications. Security of the APIs
is partially dependent on the secure integration by
the app. Different schemes can be in place to design
a secured architecture. The factors affecting the
security scheme depend on the data and business
environments.

informatics.nic.inJanuary 2021 41

Technology Update

When a mobile app runs on a user device, it is
necessary to store some user preferences and related
configuration information in the user device itself to
provide a seamless experience to the application
user. It is very important to store such information
securely on the user device. For example, the API keys
for a web service, sensitive private and confidential
information etc. It is always better to utilize the
most secured storage option provided by the device
operating system.

API keys and other sensitive information should
be encrypted and stored in the device. The data
can be encrypted using a key known to the client
or encoded using an encoding scheme. The level of
encryption can be decided based on the business
and service provided by the enterprise through
the application. Encryption logic can be built, on-
demand, based on the following:
•	 User provided PIN
•	 Keys shared through a secondary channel (OTP

shared as SMS/ EMAIL)
•	 Keys securely stored in KeyStore
•	 Keys stored within the application code (hard-

coded)
It is not recommended to hardcode important

application URLs in the application itself. Such URLs
should be supplied to the application at run time
only. Hardcoded values must be stored as byte arrays
and can be converted to strings or of required data
types at run time. It is recommended to store such
hardcoded values in native layers.	

The Encrypted Shared Preferences class is
available in the Android Jetpack library. This library
uses device-specific features for securely storing
user configurations. Android Keystore mechanism
also can be used to create keys that can be used for
encryption purposes. A named key can be created in
keystore, which by default is accessible for the app
which created the named key, which can be used

for device-level encryption and decryption. Best
practices must be followed to make the process
faster as cryptographic operations are normally
time-consuming. In the case of iOS applications,
a keystore must be used for securely storing
application-specific secrets.

App in a rooted/ jail broken device
Jailbreaking is the process of removing software

restrictions put into place by Apple on devices that run
the iOS operating system. Similarly rooting in Android
is the process of removing software restrictions
put into place by Google and gaining the ability to
access the entire operating system. A legitimate app
running on a jailbroken or rooted mobile device
is more vulnerable as it can expose sensitive user
data. Platform-specific methods are there to detect
a jailbroken or rooted phone. There is no one-size-
fits-all solution for detecting jailbroken or rooted
devices. There are attestation service providers who
remotely evaluate the devices, whether the request is
coming from the genuine app running on a genuine
Android device. Attestation services may be used in
the application if the business demands it.

Hiding Business Logic
Obfuscation mechanisms make it difficult

to understand business logic. In software, the
obfuscation of code is the process of modifying
an executable so that it is no longer useful to
unauthorized parties such as hackers but remains
fully functional. Mobile application code, wherever
possible, must be obfuscated before deployment.
There are a few tools related to Android Studio such
as R8, ProGuard and DexGuard. R8 is a free tool that
is included in Android Studio.

Another method is to use NDK in android and
write business logic/ codes using C/C++. Decompiling
and getting the source codes from NDK compiled
files are very difficult.

User awareness
Security depends on users. It is also important

to educate the end-users regarding vulnerabilities
that can be caused by installing apps from
untrusted sources. Even legitimate apps from
reliable marketplaces can include high-risk security
issues. These apps can steal user information and
configuration from other applications installed in the
device. The security implementation in any system
needs revisit and improvements regularly with
increasing threats in the cyber world. Device owners
must take responsibility for protecting the data they
store in mobile applications. But user precautions
will still fall short if developers leave vulnerabilities
in their applications.

Mobile app security is the measure and means
of defending mobile applications from digital fraud
in the form of malware, hacking, and other criminal
manipulation. The OWASP Mobile Security top 10
(https://www.owasp.org) may be referred for more
awareness about the current mobile security issues.

References
Centre for Competence for Mobile App

Development Kerala has published a document
titled ‘Secure API Integration for Mobile Apps’. The
document explains use cases and best practices
along with methods for securely storing secrets
in the device. This document is available in the
digitalNIC Platform of NIC.

For further information, please contact:

STATE INFORMATICS OFFICER
NIC Kerala State Centre
CDAC Building, Vellayamabalam
Thiruvananthapuram - 695033
KERALA

Email: sio-ker@nic.in, Phone: 0497-2700761

